
7 

8 

9 

i0 

ii 

12 

13 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

A. I. Moshinskii, "Solutions of a polydisperse system of crystals with account of fluc- 
tuations in the solution rates," Inzh. Fiz. Zh., 55, No. 6 (1988). 
Yu. A. Buevich and V. V. Mansurov, "Evolution of a system of nuclei in a metastable 
medium," Rasplavy, No. 3 (1990). 
Yu. A. Buevich (Buyevich) and V. V. Mansurov, "Kinetics of the intermediate stage of 
phase transition in batch crystallization," J. Cryst. Growth, 104, No. 3 (1990). 
F. M. Kuni, A. P. Grinin, and A. S. Kabanov, "Kinetics of homogeneous condensation for 
large initial supersaturations," Kolloid. Zh., 45, No. 3 (1983). 
F. M. Kuni and A. P. Grinin, "Kinetics of homogeneous condensation at the stage of 
formation of the fundamental mass of the new phase," Kolloid. Zh., 46, No. 3 (1984). 
A. A. Melikhov and F. M. Kuni, "Condensation kinetics with a shift of free molecular 
absorption by vapor diffusion," Kolloid. Zh., 47, No. i (1985). 
Yu. A. Buevich and A. 0. Ivanov, "Formation kinetics of spherical aggregates in magnetic 
fluids," Magnitn. Gidrodin., No. 2 (1990). 
Yu. A. Buevich, A. O. Ivanov, and V. V. Mansurov, "Theory of dispersion aggregation," 
in: Rheophysics and Thermal Physics of Nonequilibrium Systems - Proc. Internat. Seminar 
[in Russian], Part i, Minsk (1991). 
G. D. Botsaris, G. E. Denk, and R. A. Shelden, "Oscillating crystal growth gates," 
Kristall Technik, 8, No. 7 (1973). 
A. D. Randolf and E. T. White, "Modeling size dispersion in the prediction of crystal 
size distribution," Chem. Engng. Sci., 32, No. 6 (1977). 
I. V. Melikhov, M. Ya. Belousova, N. A. Rudnev, and N. T. Buiudov, "Growth rate fluc- 
tuations of microcrystals," Kristallografiya, 19, No. 6 (1974). 
!. A. Natalukha, "Self-oscillations in bulk crystallization processes in nonkinetic 
crystal growth regimes including rate fluctuations," Inzh. Fiz. Zh., 55, No. 3 (1988). 
H. Bateman and A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, New York (1953- 
1955). 
E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon Press, Oxford (1981). 

THERMODYNAMIC PROPERTIES AND THERMAL EQUATIONS OF THE STATE OF 

HIGH-PRESSURE ICE PHASES 

V. E. Chizhov UDC 536.424 

Water is characterized by a surprising number of phases compared to other materials 
[I, 2]. Of the solid phases (ices), the hexagonal ice I is thermodynamically stable under 
natural conditions on earth, while the others are high-pressure phases. Thermod~lamic condi- 
tions for the existence of the high-pressure ices occur on several planets of the solar sys- 
tem and their satellites [3, 4]. The formation of various ice modifications has been observed 
in studying explosive impact loading of ice I. In this case a very complex wave picture is 
observed, which is related to phase transitions between the various ice modifications, and 
also to melting behind the compression wave front at relatively low pressure (on the order 
of 102-103 MPa) [5, 6]. 

Within the frame work of the mechanics of continuous media, a theoretical description 
of the processes of quasi-static and dynamic deformation of ice is based on studying the 
thermodynamic properties of various ice modifications, water, and their mixtures [7-9]. Here 
we continue the investigation, started in [i0] on ice I to pressures of 210 MPa. Based on 
a critical analysis of experimental data [2, 11-19], a corresponding theoretical study was 
made of the thermodynamic properties of ices I, III, V, and VI; thermal equations of state were 
constructed, which are applicable for temperatures of 233-293 K and pressures of 0-103 MPa. 

i. H20 Phase Diagram. In studying the thermodynamic properties of ices, we choose as 
independent variables the temperature T and the pressure p and the limits of their variation: 
233 ~ T~ 293 K and 0 ~p ~ 103 MPa. The corresponding set of points on the p-T phase dia- 
gram we denote by ~. The set ~ includes I) the thermodynamically stable states of ices I, 
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123, March-April, 1993. Original article submitted February ii, 1992. 
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TABLE 1 

Melt curve MPa To, H po, MPa a c 

{3u,} 
{ 5to- } 
{6u.} 

273,i6 
251,i5 
256A5 
273,31 

0 
207 
346 
625 

--395,2 
62,0 

410,0 
707,0 

9.0 
6o.0 
8.1 
4,46 

TABLE 2 

Curve /o 1~ ]2 

{13} 
{35} 
{56} 

186,t 
344,3 
625,9 

--t.335.10 ~ 
--2,750.10 -1 

6,080. lO -2 

--t,628, 10 -1 
--t,099.10 -2 
--8,57I. I0 -4 

III, V, and Vl ~nd liquid water, 2) the phase transition curves, and 3) six triple points 
(A, B, C, D, E, and F) (Fig. i). 

We introduce the following notation. The symbols w and i, 3, 5, and 6 denote liquid 
water and ices I, III, V, and VI. The region of thermodynamic stability of phases i (i = 
i, 3, 5, 6, and w) is denoted by ~i" We note that the region of the metastable states of 
liquid water is a significantly broader than the region ~w and includes a large part of ~i 
[20]. The metastability region of ice III extends deep into the stability region of ice II, 
which makes it difficult to establish EF, which separ@tes ices II and III [13]. 

The phase transition curves are denoted by a pair of indices in braces {ij}. For ex- 
ample, the curve AB for melting ice I (Fig. i) is the curve {lw}, and the curve DD' for the 
phase transition from ice V to ice VI is the curve {56}. An empirical equation of the form 
[19] 

p=p0+ a [(T/T0) ~ -- ~], (I. 1) 

can be used to describe the melting curves {iw} (i = i, 3, 5, and 6), where the parameters 
P0, To, a, and c depend on the ice modification. The values of these parameters are shown 
in Table I. Data relative to the phase transition curves {13}, {35}, and {56} are given in 
[ii, 12]. Below we will use equations we obtained in processing data [ii] by the method of 
least squares: 

P = A § h r ,  § ~T~, (1.2) 

where T, = T - 273.15 is the temperature in degrees centigrade. The values of the coeffi- 
cients f0, fl, and f2 for these three curves are shown in Table 2. 

Triple points will be denoted by three indices {ijk}. Six triple points fall within 
the region ~ (Fig. I): {13w} is point B; {35w} is point C; {56w} is point D; the triple point 
for ice I, water, and water vapor is point A; {123} is point E; and {235} is point F. The 
temperatures and pressures at points {ijk} from data [17] are shown in Table 3. 
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TABLE 3 

Triple point Triple point I 
(Fig. i) T. I~ p, MPa (Fig. I) T. H I p. MPa 

A 
B 
C 

273,16 
25t,t5 
256,15 

200 D E 
346 F 

273,31 1 625 
238,45 213 
248,85 344 

along some curve in region ~. 
manner has the form 

The thermal equation of state of a material connects three parameters (pressure p, tem- 
perature T, and specific volume V) and has the form 

V= V(p, T). (1.3) 

For isotropic solids, Eq. (1.3) is used in the case where the stresses developed in the ma- 
terial exceed the material yield strength ~, (hydrostatic approximation) [21]. The yield 
strength and the ultimate strength of ice I is less than several megapascals under normal 
conditions, while the effects of melting and phase transitions of the other phases occur at 
pressures on the order of 10-200 MPa. This fact was used [I0] to construct a thermal equa- 
tion of state for ice I. Laboratory experiments [13] with polycrystalline samples of ices 

II, III, and V showed that the strength of ice II is comparable with that of ice I; the 
strength of ice V is somewhat less, and the strength of ice III is substantially less. In 
this regard we will use the hydrostatic,approximation, will neglect shear stresses, and con- 
sider p as the only real component of the stress tensor, as we did in [I0]. 

The thermal equation of state V i = Vi(P, T) (i = i, 3, 5, and 6) can be constructed 
from experimental data on the volumetric expansion coefficient ~Ti = I/Vi(SVi/ST)P and the 
isothermal compressibility ~Ti = -I/Vi(SVi/SP)T by integrating the expression 

d~/V~ = ar,dT -- ~,,dp ( i. 4) 

The thermal  equa t ion  of  s t a t e  of  i c e  I c o n s t r u c t e d  in t h i s  

v~(r) (io5) 

where V~(T) and ~i(T) are known functions of temperature, and m I is a constant. The value 
m I = 4.4 is used in [I0]. New experiments [14] make it possible to refine ml: m I = 5.3668. 
The densities Pl = i/Vl, computed from (1.5), were compared with measurements [14] of Pl for 
T, = -35.5~ and p = 0-200 MPa. The relative error does not exceed 0.1%, which indicates 
that Eq. (1.5) is in good agreement with the experimental results. Equations (i.i), (1.2), 
and (1.5) are used below to construct and investigate the thermal equations of state of vari- 
ous ice modifications. 

2. Thermal Equations of State of Ices III, V, and VI. Now we construct the thermal 
equation of state of high-pressure ices. We will assume that we know the values of AVij, the 
jumps in specific volume of the ices along the curves {13}, {35}, and {36}, as well as the 
functional dependence of the isothermal compressibility of ices III, V, and VI on tempera- 
ture and pressure. Then the thermal equations of state of high-pressure ices can be con- 
structed sequentially using the method described below, starting from the thermal equation 
of state of ice III. 

By using Eq. (1.5), we determine the specific volume of ice I on the curve {13}, which 
has the equation p = pIa(T) [see (1.2)]. The value of the specific volume of ice III on this 
curve is VI(pI3(T) , T) + AVI3 , where AVz3 is the jump in the specific volume during the phase 
transition from ice I to ice III. The thermal equation of state of ice III can now be estab- 
lished by integrating Eq. (1.4) along the isotherm: 

V 3=[V~(p~3(T) , r )+AV~]exp -- y ~T3(P,T) dP. (2 .1 )  
~3(T) 

Then we find values of V3(Pas(T), T) on {35} by using (2.1). By using data on the jump AV35 
on this curve and the functional dependence ~Ts = $~s(P, T) (which are assumed to be known), 
we obtain the thermal equation of state for ice V similarly to (2.1): 
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/ } V~=tV~(p~s(T),  T ) ~ - h V ~ ] e x p  - -  ~ ~r~(p,  T) dp  . 
p~(T) 

( 2 . 2 )  

We find the thermal equation of state for ice VI by the exact same method: 

V6 = [V5 (Ps, (r), T) + AV561 exp - -  ~ ~r~ (P, T) dp . ( 2 . 3 )  
p~G(r) 

We now exami ne  a v a i l a b l e  e x p e r i m e n t a l  r e s u l t s  r e q u i r e d  f o r  c o n s t r u c t i n g  t h e r m a l  e q u a -  
t i o n s  o f  s t a t e  f rom Eqs .  ( 2 . 1 ) - ( 2 . 3 ) .  The v a l u e s  o f  AVij f o r  t h e  jumps  in  t h e  s p e c i f i c  v o l -  
ume on t h e  l i n e s  {13},  {35},  and {56} a r e  g i v e n  in  [ 1 1 ] .  We now a n a l y z e  t h a t  d a t a .  F i r s t ,  
we n o t e  t h a t  AVas and AVs6 change  v e r y  l i t t l e  a l o n g  t h e  c u r v e s  {35} and {56},  r e s p e c t i v e l y .  
Thus ,  AV3s c h a n g e s  f rom - 5 . 4 4 6 . 1 0  - s  m3/kg a t  T = 238 g t o  - 5 . 4 6 9 . 1 0  -2 ma /kg  a t  T = 253 K ( t h e  
minus sign indicates a decrease in the specific volume in the phase change from ice III to 
ice V), and AV56 changes from -3.809.10 -2 m~/kg at T = 253 K to -3.886.10 -2 ma/kg at T = 
273 K. 

Information is also presented [ii] on the change of AVI3 along the curve {13}. How- 
ever, we will show that using it leads to contradictory results. To do this we derive a 
formula which relates the value of the volumetric expansion coefficient of the two phases at 
the phase transition curve. For definiteness we examine the curve {13}. Let M I and M 2 be 
points on the curve {13} which correspond to temperatures Tl and T2; let V~ I) and V (2) be 

AV~) be values of the jumps in the specific volumes of ice I at these points; let AV!~) and i i 

the specific volume at the points M I and M2; and let AT = T 2 - T I. The valueiaT3 -- the 

volumetric expansion coefficient of ice III at point M I - Can be estimated from the formula 

[~(2) _ V(1) AV(2) _ AV(1) ] 

By substituting the expression 

v?)[- + 

we obtain a function for estimating =T3 at point Ml: 

(AV (2) AV<t)~/(V~)AT~ (2.4) 

Here  Ap = p l 3 ( T 2 )  - p z 3 ( T 1 ) .  We u s e  t h e  d a t a  in  [11] and c h o o s e  Tz = 243 K and T 2 = 253 K. 
We have AT = i0 K, Ap = -5 MPa, AV!~) = -0.1919.10 -3 ma/kg, and AV(2) = -0.1773-i0 -~ ma/kg. 

13 

With the aid of Eq. (1.5)we find $~)= 1.01.i0 -4 MPa -z, ai~)= 1.17.10 -~ K -~, V~(~) = 1.062. 

10 -3 mS/kg; for the specific volume of ice III we take V! ~) ~ 0.88.10 -~ ma/kg. The first 

term on the right side of (2.4) equals 2.02.10 -~, and the second equals 1.66.10 -~. Then 
from (2.4) it follows that according to data [ii], a! ~) will be on the order of i0 -~ Such 

a value of a(1) is unrealistic. Actually, it exceedslSthe estimate values of analogous coef- Ts 
ficients for ice modifications by at least an order of magnitude; it is characteristic of 

liquids, but not solids [22]. Moreover, use of ~)- = I0 -~ K -~ along with established values 
[14] of the isothermal and adiabatic moduli K T and~K S in the well-known thermodynamic formula 

Cp = K T K s T a ~ V / ( K s  - -  KT) ( 2 . 5 )  

l e a d s  t o  a s p e c i f i c  h e a t  o f  Cp z 10 ~ J / ( k g - K )  f o r  i c e  I I I  a t  c o n s t a n t  p r e s s u r e  which  e x c e e d s  
Cp f o r  o t h e r  s o l i d s  by two o r d e r s  o f  m a g n i t u d e .  Thus ,  t h e  d a t a  [11]  on t h e  jump in  t h e  s p e -  
c i f i c  vo lume on t h e  c u r v e  {13} l e a d  t o  c o n t r a d i c t o r y  r e s u l t s .  T h i s  h a s  a l r e a d y  been  n o t e d  
[181.  

not hard to see that the source of such a large value of a~) is the difference It is 
3 

AVis2) _ AV~ ). Such a significant change of AVI3 is presented [ii] only for the curve {13}; 
for curves {35} and {36}, the changes AVz~ and ~V~s are two orders of magnitude less, as noted 
above. For a comparable estimate of AVls we turn to other experimental data. In I[18] AVI~ = 
-0.1847"10 -3 mS/kg at p = 210 MPa and T = 248 K, while a value 1.18 times higher than in 
[ii] is established [2] at p = 200 MPa and T = 253 K. We know of no other sources except 
those cited above, in which AVI~ could be determined along the curve {13}. Therefore, due to the 
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estimates of aT3 and the/scatter in experimental values of &V1a in the literature, we will 
take AV13 as a constant when we derive the thermal equation of state of ice III below; the 
value of AVIs will be chosen to give the best fit of the thermal equation of state to ex- 
periment. We make an analogous assumption with regard to AVas and ~V56 on the curves {35} 
and {56}, respectively. The choice of the values of AV13, 5Vas, and 5Vs6 are shown in Table 
4 in the column labeled AV 0. 

Now we turn to measured data [2, 15] on the properties of ices III, V, and VI. The pres- 
sure-dependence of the density of ice III is determined at T, =-27.2~ [15], and the densities of 
ices V and VI are determined at T, = -35.5~ from which we can establish expressions for ~Ti 
at these temperatures: 

~ r ~ = b / ( a + b p )  ( i = 3 ,  5, 6). ( 2 . 6 )  

Here p has u n i t s  o f  MPa, and ~Ti has u n i t s  of  MPa -1 The c o e f f i c i e n t s  a and b a r e  shown in 
Table  4. An i m p o r t a n t  p r o p e r t y  of  t he  i s o t h e r m a l  moduli  K T = 1/8 T [2] f o r  d i f f e r e n t  i c e  modi- 
f i c a t i o n s  i s  t he  f o l l o w i n g :  K T grows a lmost  l i n e a r l y  wi th  i n c r e a s i n g  p r e s s u r e ,  and i t  de-  
c r e a s e s  l i n e a r l y  wi th  i n c r e a s i n g  t e m p e r a t u r e .  Thus, by us ing  ( 2 . 6 ) ,  t he  form of  t he  dependence 
of  8Ti on p and T can be w r i t t e n  as 

~Ti = b/[a + bp + A ( T ,  - -  T1,)]. ( 2 . 7 )  

In Eq. ( 2 . 7 ) ,  T1,  = -27 .2~  f o r  i c e  I I I ,  whi le  T~, = -35 .5~ f o r  i c e s  V and VI. According 
to what was stated above, h < 0 for all ice modifications. Experiments [2] showed that the 
values of A vary over a range of -5"10 -4 to -2-10 -3 and A = -1.418"10 -3 for ice I [23]. We 
will use values A = -2.0"10 -3 , -7.0"10 -4 , and -5.0.10 -4 for ices III, V, and VI. 

Thus, all required quantities are now determined for constructing thermal equations of 
state for ices III, V, and VI in accordance with Eqs. (2.1)-(2.3). Having performed the inte- 
gration, we come to the desired thermal equations of state: 

Vi = (do + d l T ,  + d2T~ + AV0) a + bp o (r,) + A (T. -- T1. ) ( 2 . 8 )  
�9 ~ + ~p + 2 ~ - ~ , :  r l ,  ) 

In  Eq. ( 2 . 8 )  hV 0 and p 0 ( T , )  should  be r e p l a c e d  by AVza and p l s ( T , )  f o r  i c e  I I I ,  by AVas and 
pas(T,) for ice V and by AVs6 and ps6(T,) for ice Vl. The functions Pij(T,) are given by 
Eq. (1.2). The values of the coefficients that enter into Eq. (2.8) are shown in Table 4. 

The values which are calculated from Eq. (2.8) for the specific volume of the ices are 
compared with data [ii] along the melt curves. The relative error does not exceed 0.62, 0.47, 
and 0.32% for ices III, V, and VI, which indicates good agreement of (2.8) with experimental 

results. 

3. Thermodynamic Functions of High-Pressure Ices. We now calculate the heat capacity, 
the Gibbs thermodynamic potential, and the enthalpy of various ice modifications; these quan- 
tities can be used to determine all the other thermodynamic functions. 

The heat capacity at constant volume c V for crystalline solids can be approximated by 
c v = 6 kcal/(mole.K) (Dulong and Petit's law), which in the case of H20 is 1.39-103 J/(kg.K). 
This estimate is satisfactory if the temperature of the material is above the Debye tempera- 
ture T D [24], which is determined by the formula 

h ( 9p v'~v~ )1/3, 

where h is Planck's constant; k is Boltzmann's constant; p is the density; m is the molecular 
weight; and vs and v t are the longitudinal and transverse sound speeds. By using data [14, 
15], we obtain the following values of T D for ices I, III, V, and VI: 206.5, 223.2, 255.4, and 
279.6 K, respectively. From this it follows that if the required experimental data are miss- 
ing, we can approximate cvi = 1.39"103 J/(kg.K). The heat capacity Cpi is related to cvi: 
Cpi/CVi = Ksi/KTi, where KSi and KTi are the adiabatic and isothermal-bulk moduli; in this 

case Cpi differs from cvi by no more than 2-3%. 

The value of Cp~ can be refined for ices I, III, and V. This has been done [i0] for 
ice I. We determine the heat capacity for ices III and V by using Eq. (2.5) in which we 
insert known values [15] of KSi and KTi; we compute V i and aTi from the constructed thermal 
equations of state. We obtain cDa = 1.59"103 J/(kg.K) for T... = -27.2~ and p = 276 MPa, and 
Cps = 2.59.103 J/(kg.K) for T, =--35.5~ and p = 480 MPa. For other attainable values of T 

and P, we can calculate Cpi from the formula 
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Pl 

where the integrand is computed from Eq. (2.8), and the first term on the right side is 
taken equal to the values found above. 

The specific Gibbs thermodynamic potential for the i-th phase G i = H i - TS i plays an 
important role in phase-transition problems, where H i and S i are the specific enthalpy and 
entropy of the material. From thermodynamics we know that Gi(P, T) = Gj(p, T) along the 
phase-transition curve (ij}. Whenever the phase-transition kinetics must be considered, it 
is assumed that the transition rate is determined by the difference in the Gibbs functions 
G i - Gj of the interacting phases [9, 21]. 

In order to construct the Gibbs potential of the high-pressure ices, we introduce the 
functions G(p, T) and V(p, T), which are determined in the region ~ by assuming that G(p, 
T) ~ Gi( p, T) and V(p, T) ~ Vi(P, t) in ~i c ~. Here G(p, T) is continuous and V(p, T) is 
piecewise continuous in ~. The points of discontinuity of V(p, T) are concentrated on the 
phase transition curves {ij}. If H0(T) and S0(T) are known at some pressure p = P0, then 
G(p, T) can be found from the formula 

P 

~(p, ~) = i&(r) - TSo(T) + ~ V(p, T)dp. (3.1) 
Po 

The jump in the function V(p, T) must be considered when the phase transition curve crosses 
the isotherm used in performing the integration on the right side of (3.1). As an example, 
we examine the isotherm RR' (see Fig. I). It intersects the curves {lw} and {5w}, where the 
point R' is located in the region ~5. Then we find from (3.1) 

Plw (T) P5w(T) P 

(p,T)=II o(T)-TS o(T)+ ~ V l(p,T) dp-k ~ V~(p,T) dp--k ~ Vs(p,T) dp. G 
P Plw(T) Psw(T) 

The e q u a t i o n s  p = p i j ( T )  o f  t h e  m e l t  c u r v e s  { i j }  ( i  = 1, 3, 5,  and 6) a r e  d e s c r i b e d  by Eqs.  
( 1 . 1 ) ,  t h e  e q u a t i o n s  o f  t h e  c u r v e s  {13},  {35},  and {56} a r e  d e s c r i b e d  by Eqs.  ( 1 . 2 ) .  The 
s p e c i f i c  vo lumes  o f  t h e  i c e s  I ,  I I I ,  V, and VI a r e  computed  f rom ( 1 . 5 )  and ( 2 . 8 ) .  The f u n c -  
t i o n  Vw(P, T) has  been  examined  in  d e t a i l  [ 1 0 ] .  

We r e t u r n  t o  e s t a b l i s h i n g  t h e  f u n c t i o n s  H0(T) and S 0 ( T ) .  B e c a u s e  t h e  e n t h a l p y  H and 
t h e  e n t r o p y  S a r e  d e t e r m i n e d  r e l a t i v e  t o  a c o n s t a n t ,  we u s e  as  a b a s i s  f o r  H = S = 0 t h e  
point in the region ~ at which P0 = 0.i MPa and T O = 273.15 K. We compute H 0 and S O from the 
formula 

T Y 

tto= f Cp(po, T)dT , So=~ cv(po'T) r aT. (3.2) 
To T O 

The dependence cp(p0 , T) on T for ice I (for T < T o ) is determined by the formula Cpl(p0, 
T) = 2.115.102 + 7.79.T~ J/(kg.K) [12]; the expression for liquid water, which we obtained 
from data [19], has the formcpw(P0 , T) =4.2153.102-2.2584.T,~+3.2069.10-iT% 2 J/(kg'K). The 
function H0(T) - TS0(T) , which is continuous at T = To, can~easily be found explicitly from 
(3.2). Thus, the Gibbs thermodynamic potential of all examined phases of HiO is completely 
determined. 
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The enthalpy H i can be calculated by using the formula 

P 
Hi (p, ~) = Ho (T) + .! IV -- T (OV/OT)p] dp+ iS Asr~, 

Po A 

where the last term is the sum of enthalpy changes where the isotherms intersect the phase 
transition curves. The quantity AH k is the specific phase transition energy q with the 
proper sign. The value of qij can be determined on the curve {ij} by the Clapeyron-Clausius 
equation 

q~s ~ TA VijdpUdT, 

by us ing  ( 1 . 1 ) ,  ( 1 .2 )  and the  r e s u l t a n t  thermal  e q u a t i o n s  of  s t a t e .  

4. Calculating the Equilibrium Melting Ices at High pressure. We use the resultant 
thermal equations of state to calculate the equilibrium melting of ices III, V, and VI under 
a quasi-static load along the melt curves {3w}, {5w}, and {6w}. We apply the method used 
earlier [i0] for ice I. 

The curve {iw} (i = i, 3, 5, and 6) corresponds to the p and T values at which ice and 
water are thermodynamically allowable as a two-phase mixture. Let z be the mass fraction of 
water in the mixture. Then the specific volume of the mixture V and its entropy S are computed 
as 

V = ( i - - z )  V~+zV~, S=( I - - z )S~ i zS~ , .  ( 4 .1 )  

We now examine the adiabatic loading process of the mixture by assuming S = const. Then, in 
analogy to [I0], we use the equations for the adiabatic compressibility of the mixture 

dV /dp = (1 --  z) [ (OVUOp)T -6 (iTtqiw) (OV UOT)v (Vw --  Vi) -- %iT (Vw - -  

- -  r 2 . Vi)2/q~w] + z [ (OVwlOp)~ .6 (2 Tlq~)(OVJO Y)p (V~,-- V O-- c~iT(Vw-- V O-lq~w], ( 4 .2  ) 

the Clapeyron-Clausius equation 

dT/dp = T ( V = -  V,)/q,. (4 .3 )  

and the equation which describes the change in the specific heat of melt qij along the curve 
{iw} 

@ - cp., - -  c~i + - f -  - -  v ~  ~ [  q ~  ( 4 . 4 )  

Thus, we have a system of ordinary differential equations (4.2)-(4.4) with respect to V, T, 
and qiw" Once they are solved along with (4.1) for given initial conditions, we can deter- 
mine the adiabatic dependence of V(p) (the isentrope of the mixture) and also compute T(p) 
numerically, i.e., determine the melt curve. All quantities which enter into the right sides 
of (4.2)-(4.4) are obtained in Secs. 1-3 of this article. The thermodynamic properties of 
water are described in [i0]. 

The system (4.1)-(4.4) was integrated numerically by the Runge-Kutta method. The values 
of the required functions at the triple points {13w}, {35w}, and {56w} of ices III, V, and 
VI were chosen as the starting values. In each series of calculations we varied the initial 
values of z from 0.0 to 0.8 with a step of 0.2. The results of the calculations are shown 
in Figs. 2-7. 
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In Figs. 2-4, the solid lines show the calculated melt curves of the ices III, V, and 
Vl, and the points show Bridgman's data [ii]. The good agreement of the calculation with 
the experimental data can be seen for ice VI (Fig. 4). For ices III and V some deviation 
of the calculated curves from the data [ii] can be explained by the fact that the initial 
value of the heat of melt q for subsequent curves was chosen from the previous curve accord- 
ing to Eq. (4.4). These initial values differ from [ii] by roughly 10-15%, which is caused 
by the deviations from data [Ii] of the calculated qlw on curve {lw} (see the discussion in 
[10]). 

Figures 5-7 show the calculated isentropes V(p) of ice-water mixtures for ices IIl, V, 
and VI, respectively. The solid lines to the right and left are the boundaries of the region occu- 
pied by the two-phase mixture in the p - V diagram, and the dashed curves 1-5 are isentropes of the 
mixture which correspond to initial water fractions z = 0, 0.2, 0.4, 0.6, and 0.8. The 
points are data [ii] which correspond to the boundaries of the two-phase region. As noted 
in [i0], the isentropes of the two-phase mixture of ice I and water have the property (a2V/ 
~p2) s < 0 (the curves on the p-V diagram are convex upwards). Conversely, the calculated 
isentropes of mixtures with ice V and ice VI are convex downward, while the mixture with 
ice III and water is convex upwards for z = 0, 0.2, and 0.4, but downwards for z = 0.6 and 
0.8. Such a behavior of isentropes of mixtures of water and ice of different modifications 
indicates the complexity of the wave picture formed when compression waves are propagated 
through a sample of ice I loaded to pressures p on the order of 102-102 MPa, as indicated by 
experimental data [5, 6]. 

5. Conclusions. We used the experimental data of different authors to do a comparative 
analysis of the thermodynamic characteristics of ices I, Ill, V, and VI for temperatures of 
233-293 K and pressures of 0-102 MPa and to construct new thermal equations of state for 
ices III, V, and VI. A critical analysis of previous results [ii] on the jumps in the spe- 
cific volume on the phase transition curves {13}, {35}, and {56} showed that the data on the 
changes in the specific volume on the curve {13} lead to contradictory results. In con- 
structing the thermal equations of state of the high-pressure ice phases we assumed that the 
changes in the specific volume are constant on the curves {13}, {35}, and {56}. These ther- 
mal equations of state can be improved and their range of application can be expanded if data 
on the temperature-dependence of the volumetric expansion coefficient and the isothermal 
compressibility of the ice phases at various pressures are refined. Here we note that other 
forms of the so-called isothermal equation of state are sometimes used [25] because of the 
relationship between the lack of experimental data and the quality of the ice thermal equa- 
tions of state. 

The Debye temperatures of the ice phases computed from experimental data show that the 
value c v = 1.39.102 J/(kg-K) is a satisfactory approximation. Refined values of Cp were 
obtained for ices III and V. The Gibbs thermodynamic potential, which plays an important 
role in studying phase change kinetics, was constructed for various ice modifications and 
liquid water. We examined the calculation of the specific enthalpy of various ice phases. 

The thermodynamic functions of liquid water for T > 273 K have been extensively studied, 
and results continue to be published [26]. Here the thermal equation of state of water and 
its thermodynamic functions were used, which were examined in [i0] and which are applicable 
to T < 273 K, where all the melt curves for the ice phases I, III, and V are located. 

The equilibrium melt of ices III, V, and VI were investigated. The melt curves were 
calculated numerically, and the bounds of the two-phase regions of the p-V diagr~n were 
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determined. The calculated isentropes of water mixtures of ice V and ice VI have the property 
(82V/Sp2) s > 0, as opposed to ice III, for which (82V/SP2)s < 0 in the two-phase region. The 
mixture of ice III phases and water shows a different behavior of the isentropes, depending 
on the initial water fraction. This indicates a complex wave picture when compressive waves 
propagate through a sample during impact and explosive loading. 

These results can serve as a basis for mathematical modeling in studying the quasistatic 
and dynamic deformation of various H20 phases and for interpreting corresponding experimental 
data. 
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